澳门新浦京娱乐场网站-www.146.net-新浦京娱乐场官网
做最好的网站

澳门新浦京娱乐场网站:初学必备,Anaconda入门教

Anaconda集合了python,Spyder,Jupyter notebook及conda-----包管理器与环境管理器(含常用的panda,numpy等),省去单独下载的繁琐步骤,方便使用。

一、下载anaconda

Anaconda多环境多版本python配置操作方法,anacondapython

conda测试指南

在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda

注意:在安装之后,你应该关闭并重新打开windows命令行。

一、Conda测试过程:

使用conda。首先我们将要确认你已经安装好了conda

配置环境。下一步我们将通过创建几个环境来展示conda的环境管理功能。使你更加轻松的了解关于环境的一切。我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份。

测试python。然后我们将检查哪一个版本的python可以被安装,以及安装另一个版本的python,还有在两个版本的python之间的切换。

检查包。我们将1)罗列出安装在我们电脑上的包,2)浏览可用的包,3)使用conda install命令来来安装以及移除一些包。对于一些不能使用conda安装的包,我们将4)在Anaconda.org网站上搜索。对于那些在其它位置的包,我们将5)使用pip命令来实现安装。我们还会安装一个可以免费试用30天的商业包IOPro

移除包、环境以及conda.我们将以学习删除你的包、环境以及conda来结束这次测试。

二、完整过程

提示:在任何时候你可以通过在命令后边跟上--help来获得该命令的完整文档。例如,你可以通过如下的命令来学习conda的update命令。

conda update --help

1. 管理conda:

Conda既是一个包管理器又是一个环境管理器。你肯定知道包管理器,它可以帮你发现和查看包。但是如果当我们想要安装一个包,但是这个包只支持跟我们目前使用的python不同的版本时。你只需要几行命令,就可以搭建起一个可以运行另外python版本的环境。,这就是conda环境管理器的强大功能。

提示:无论你使用Linux、OS X或者Windows命令行工具,在你的命令行终端conda指令都是一样的,除非有特别说明。

检查conda已经被安装。

为了确保你已经在正确的位置安装好了conda,让我们来检查你是否已经成功安装好了Anaconda。在你的命令行终端窗口,输入如下代码:

conda --version

Conda会返回你安装Anaconda软件的版本。

提示:如果你看到了错误信息,检查你是否在安装过程中选择了仅为当前用户按安装,并且是否以同样的账户来操作。确保用同样的账户登录安装了之后重新打开命令行终端窗口。

升级当前版本的conda

接下来,让我们通过使用如下update命令来升级conda:

conda update conda

conda将会比较新旧版本并且告诉你哪一个版本的conda可以被安装。它也会通知你伴随这次升级其它包同时升级的情况。

如果新版本的conda可用,它会提示你输入y进行升级.

proceed ([y]/n)? y

conda更新到最新版后,我们将进入下一个主题。

2. 管理环境。

现在我们通过创建一些环境来展示conda的环境操作,然后移动它们。

创建并激活一个环境

使用conda create命令,后边跟上你希望用来称呼它的任何名字:

conda create --name snowflake biopython

这条命令将会给biopython包创建一个新的环境,位置在/envs/snowflakes

小技巧:很多跟在--后边常用的命令选项,可以被略写为一个短线加命令首字母。所以--name选项和-n的作用是一样的。通过conda -h或conda –-help来看大量的缩写。

激活这个新环境

Linux,OS X: source activate snowflakes
Windows:activate snowflake`

小技巧:新的开发环境会被默认安装在你conda目录下的envs文件目录下。你可以指定一个其他的路径;去通过conda create -h了解更多信息吧。

小技巧:如果我们没有指定安装python的版本,donda会安装我们最初安装conda时所装的那个版本的python。

创建第二个环境

这次让我们来创建并命名一个新环境,然后安装另一个版本的python以及两个包 Astroid 和 Babel。

conda create -n bunnies python=3 Astroid Babel

这将创建第二个基于python3 ,包含Astroid 和 Babel 包,称为bunnies的新环境,在/envs/bunnies文件夹里。

小技巧:在此同时安装你想在这个环境中运行的包,

小提示:在你创建环境的同时安装好所有你想要的包,在后来依次安装可能会导致依赖性问题(貌似是,不太懂这个术语怎么翻)。

小技巧:你可以在conda create命令后边附加跟多的条件,键入conda create –h 查看更多细节。

列出所有的环境

现在让我们来检查一下截至目前你所安装的环境,使用conda environment info 命令来查看它:

conda info --envs

你将会看到如下的环境列表:

conda environments:

 snowflakes          * /home/username/miniconda/envs/snowflakes

 bunnies               /home/username/miniconda/envs/bunnies

 root                  /home/username/miniconda

确认当前环境

你现在处于哪个环境中呢?snowflakes还是bunnies?想要确定它,输入下面的代码:

conda info -envis

conda将会显示所有环境的列表,当前环境会显示在一个括号内。

(snowflakes)

注意:conda有时也会在目前活动的环境前边加上*号。

切换到另一个环境(activate/deactivate)

为了切换到另一个环境,键入下列命令以及所需环境的名字。

Linux,OS X: source activate snowflakes
Windows:activate snowflakes

如果要从你当前工作环境的路径切换到系统根目录时,键入:

Linux,OS X: source deactivate
Windows: deactivate

当该环境不再活动时,将不再被提前显示。

复制一个环境

通过克隆来复制一个环境。这儿将通过克隆snowfllakes来创建一个称为flowers的副本。

conda create -n flowers --clone snowflakes

通过conda info –-envs来检查环境

你现在应该可以看到一个环境列表:flowers, bunnies, and snowflakes.

澳门新浦京娱乐场网站,删除一个环境

如果你不想要这个名为flowers的环境,就按照如下方法移除该环境:

conda remove -n flowers --all

为了确定这个名为flowers的环境已经被移除,输入以下命令:

conda info -e

flowers 已经不再在你的环境列表里了,所以我们知道它被删除了。

学习更多关于环境的知识

如果你想学习更多关于conda的命令,就在该命令后边跟上 -h

conda remove -h

3. 管理Python

conda对Python的管理跟其他包的管理类似,所以可以很轻松地管理和升级多个安装。

检查python版本

首先让我们检查那个版本的python可以被安装:

conda search --full --name python

你可以使用conda search python来看到所有名字中含有“python”的包或者加上--full --name命令选项来列出完全与“python”匹配的包。

安装一个不同版本的python

现在我们假设你需要python3来编译程序,但是你不想覆盖掉你的python2.7来升级,你可以创建并激活一个名为snakes的环境,并通过下面的命令来安装最新版本的python3:

conda create -n snakes python=3
·Linux,OS X:source activate snakes
·Windows: activate snakes

小提示:给环境取一个很形象的名字,例如“Python3”是很明智的,但是并不有趣。

确定环境添加成功

为了确保snakes环境已经被安装了,键入如下命令:

conda info -e

conda会显示环境列表,当前活动的环境会被括号括起来(snakes)

检查新的环境中的python版本

确保snakes环境中运行的是python3:

python --version

使用不同版本的python

为了使用不同版本的python,你可以切换环境,通过简单的激活它就可以,让我们看看如何返回默认2.7

·Linux,OS X: source activate snowflakes
·Windows:activate snowflakes

检查python版本:

确保snowflakes环境中仍然在运行你安装conda时安装的那个版本的python。

python --version

注销该环境

当你完成了在snowflakes环境中的工作室,注销掉该环境并转换你的路径到先前的状态:

·Linux,OS X:source deactivate
·Windows:deactivate

4. 管理包

现在让我们来演示包。我们已经安装了一些包(Astroid,Babel和一些特定版本的python),当我们创建一个新环境时。我们检查我们已经安装了那些包,检查哪些是可用的,寻找特定的包并安装它。接下来我们在Anconda.org仓库中查找并安装一些指定的包,用conda来完成更多pip可以实现的安装,并安装一个商业包。

查看该环境中包和其版本的列表:

使用这条命令来查看哪个版本的python或其他程序安装在了该环境中,或者确保某些包已经被安装了或被删除了。在你的终端窗口中输入:

conda list

使用conda命令查看可用包的列表

一个可用conda安装的包的列表,按照Python版本分类,可以从这个地址获得:

查找一个包

首先让我们来检查我们需要的这个包是否可以通过conda来安装:

conda search beautifulsoup4

它展示了这个包,所以我们知道它是可用的。

安装一个新包

我们将在当前环境中安装这个Beautiful Soup包,使用conda命令如下;

conda install --name bunnies beautifulsoup4

提示:你必须告诉conda你要安装环境的名字(-n bunies)否则它将会被安装到当前环境中。

现在激活bunnies环境,并且用conda list来显示哪些程序被安装了。

·Linux,OS X:source activate bunnies
·Windows:activate bunnies

所有的平台:

conda list

从Anaconda.org安装一个包

如果一个包不能使用conda安装,我们接下来将在Anaconda.org网站查找。Anaconda.org向公开和私有包仓库提供包管理服务。Anaconda.org是一个连续分析产品。

提示:你在Anaconda.org下载东西的时候不强制要求注册。

为了从Anaconda.org下载到当前的环境中,我们需要通过指定Anaconda.org为一个特定通道,通过输入这个包的完整路径来实现。

在浏览器中,去 网站。我们查找一个叫“bottleneck”的包,所以在左上角的叫“Search Anaconda Cloud”搜索框中输入“bottleneck”并点击search按钮。

Anaconda.org上会有超过一打的bottleneck包的版本可用,但是我们想要那个被下载最频繁的版本。所以你可以通过下载量来排序,通过点击Download栏。

点击包的名字来选择最常被下载的包。它会链接到Anaconda.org详情页显示下载的具体命令:

conda install --channel https://conda .anaconda.ort/pandas bottleneck

检查被下载的包

conda list

通过pip命令来安装包

对于那些无法通过conda安装或者从Anaconda.org获得的包,我们通常可以用pip(“pip install packages”的简称)来安装包。

提示: pip只是一个包管理器,所以它不能为你管理环境。pip甚至不能升级python,因为它不像conda一样把python当做包来处理。但是它可以安装一些conda安装不了的包,和vice versa(此处不会翻译)。pip和conda都集成在Anaconda或miniconda里边。

我们激活我们想放置程序的环境,然后通过pip安装一个叫“See”的程序。

·Linux,OS X: source activate bunnies
·Windows:activate bunnies

所有平台:

pip install see

检查pip安装

检查See是否被安装:

conda list

安装商业包

安装商业包与你安装其他的包的过程异常。举个例子,让我们安装并删除一个更新的商业包的免费试用 IOPro,可以加速你的python处理速度:

conda install iopro

提示:除了学术使用,该版本在30天后试用期满

你现在可以安装以及检查你想用conda安装的任何包,无论使用conda命令、从Anaconda.org下载或者使用pip安装,无论开源软件还是商业包。

5. 移除包、环境、或者conda

如果你愿意的话。让我们通过移除一个或多个试验包、环境以及conda来结束这次测试指导。

移除包

假设你决定不再使用商业包IOPro。你可以在bunnies环境中移除它。

conda remove -n bunnies iopro

确认包已经被移除

使用conda list命令来确认IOPro已经被移除了

conda list

移除环境

我们不再需要snakes环境了,所以输入以下命令:

conda remove -n snakes --all

确认环境被移除

为了确认snakes环境已经被移除了,输入以下命令:

 conda info --envis

snakes不再显示在环境列表里了,所以我们知道它已经被删除了

删除conda

Linux,OS X:

移除Anaconda 或 Miniconda 安装文件夹

rm -rf ~/miniconda OR  rm -rf ~/anaconda

Windows:

去控制面板,点击“添加或删除程序”,选择“Python2.7(Anaconda)”或“Python2.7(Miniconda)”并点击删除程序。

以上这篇Anaconda多环境多版本python配置操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持帮客之家。

conda测试指南 在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda...

conda测试指南

Anaconda 是一个包含数据科学常用包的 Python 发行版本。它基于 conda ——一个包和环境管理器——衍生而来。你将使用 conda 创建环境,以便分隔使用不同 Python 版本和不同程序包的项目。你还将使用它在环境中安装、卸载和更新包。通过使用 Anaconda,处理数据的过程将更加愉快。

 

第一步当然是下载anaconda了,官方网站的下载需要用迅雷才能快点,或者直接到清华大学镜像站下载。当然这里推荐脚本之家下载,下载地址都整理好了

在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda

安装 Anaconda

Anaconda 可用于 Windows、Mac OS X 和 Linux。可以在 https://www.continuum.io/downloads 上找到安装程序和安装说明。

如果计算机上已经安装了 Python,这不会有任何影响。实际上,脚本和程序使用的默认 Python 是 Anaconda 附带的 Python。

选择 Python 3.6 版本(你也可以根据具体的需要选择 Python 2 的版本)。此外,如果是 64 位操作系统,则选择 64 位安装程序,否则选择 32 位安装程序。继续并选择合适的版本,然后安装它。之后,继续进行!

完成安装后,会自动进入默认的 conda 环境,而且所有包均已安装完毕,如下面所示。可以在终端或命令提示符中键入 conda list,以查看你安装的内容。

在 Windows 上,会随 Anaconda 一起安装一批应用程序:

Anaconda Navigator,它是用于管理环境和包的 GUI
Anaconda Prompt 终端,它可让你使用命令行界面来管理环境和包
Spyder,它是面向科学开发的 IDE
为了避免报错,我推荐在默认环境下更新所有的包。打开 Anaconda Prompt (或者 Mac 下的终端),键入:

conda upgrade --all

并在提示是否更新的时候输入 y(Yes)以便让更新继续。初次安装下的软件包版本一般都比较老旧,因此提前更新可以避免未来不必要的问题。

注:如过已经下载过python,可点击python安装包,再次setup,选择uninstall. 如Geany等IDE不影响Anaconda下载。

下载地址:

注意:在安装之后,你应该关闭并重新打开windows命令行。

管理包

安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入 conda install package_name。例如,要安装 numpy,请键入

conda install numpy

你还可以同时安装多个包。类似

conda install numpy scipy pandas

的命令会同时安装所有这些包。还可以通过添加版本号(例如

conda install numpy=1.10

来指定所需的包版本。

Conda 还会自动为你安装依赖项。例如,scipy 依赖于 numpy,因为它使用并需要 numpy。如果你只安装 scipy (conda install scipy),则 conda 还会安装 numpy(如果尚未安装的话)。

大多数命令都是很直观的。要卸载包,请使用 conda remove package_name。要更新包,请使用 conda update package_name。如果想更新环境中的所有包(这样做常常很有用),请使用 conda update --all。最后,要列出已安装的包,请使用前面提过的 conda list。

如果不知道要找的包的确切名称,可以尝试使用 conda search search_term 进行搜索。例如,我知道我想安装 Beautiful Soup,但我不清楚确切的包名称。因此,我尝试执行

conda search beautifulsoup

它返回可用的 Beautiful Soup 包的列表,并列出了相应的包名称 beautifulsoup4。

 

//www.jb51.net/softs/556392.html

一、Conda测试过程:

管理环境

如前所述,你可以使用 conda 创建环境以隔离项目。要创建环境,请在终端中使用 conda create -n env_name list of packages。在这里,-n env_name 设置环境的名称(-n 是指名称),而 list of packages 是要安装在环境中的包的列表。例如,要创建名为 my_env 的环境并在其中安装 numpy,请键入 conda create -n my_env numpy。

创建环境时,可以指定要安装在环境中的 Python 版本。这在你同时使用 Python 2.x 和 Python 3.x 中的代码时很有用。要创建具有特定 Python 版本的环境,请键入类似于 conda create -n py3 python=3 或 conda create -n py2 python=2 的命令。实际上,我在我的个人计算机上创建了这两个环境。我将它们用作与任何特定项目均无关的通用环境,以处理普通的工作(可轻松使用每个 Python 版本)。这些命令将分别安装 Python 3 和 Python 2 的最新版本。要安装特定版本(例如 Python 3.3),请使用 conda create -n py python=3.3。

进入环境
创建了环境后,在 OSX/Linux 上使用 source activate my_env 进入环境。在 Windows 上,请使用 activate my_env。

进入环境后,你会在终端提示符中看到环境名称,它类似于 (my_env) ~ $。环境中只安装了几个默认的包,以及你在创建它时安装的包。你可以使用 conda list 检查这一点。在环境中安装包的命令与前面一样:conda install package_name。不过,这次你安装的特定包仅在你进入环境后才可用。要离开环境,请键入 source deactivate(在 OSX/Linux 上)。在 Windows 上,请使用 deactivate。

Anaconda下载官网:

清华大学提供了镜像,从这个镜像下载速度很快,地址:

使用conda。首先我们将要确认你已经安装好了conda

保存和加载环境

共享环境这项功能确实很有用,它能让其他人安装你的代码中使用的所有包,并确保这些包的版本正确。你可以使用 conda env export > environment.yaml 将包保存为 YAML。命令的第一部分 conda env export 用于输出环境中的所有包的名称(包括 Python 版本)。导出命令的第二部分 > environment.yaml将导出的文本写入到 YAML 文件 environment.yaml 中。现在可以共享此文件,而且其他人能够用于创建和你项目相同的环境。

要通过环境文件创建环境,请使用 conda env create -f environment.yaml。这会创建一个新环境,而且它具有同样的在 environment.yaml 中列出的库。

 

配置环境。下一步我们将通过创建几个环境来展示conda的环境管理功能。使你更加轻松的了解关于环境的一切。我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份。

列出环境

如果忘记了环境的名称(我有时会这样),可以使用 conda env list 列出你创建的所有环境。你会看到环境的列表,而且你当前所在环境的旁边会有一个星号。默认的环境(即当你不在选定环境中时使用的环境)名为 root。

清华镜像:

选择相应的版本进行下载就好

测试python。然后我们将检查哪一个版本的python可以被安装,以及安装另一个版本的python,还有在两个版本的python之间的切换。

使用环境

对我帮助很大的一点是,我的 Python 2 和 Python 3 具有独立的环境。我使用了 conda create -n py2 python=2conda create -n py3 python=3 创建两个独立的环境,即 py2py3。现在,我的每个 Python 版本都有一个通用环境。在所有这些环境中,我都安装了大多数标准的数据科学包(numpy、scipy、pandas 等)。

我还发现,为我从事的每个项目创建环境很有用。这对于与数据不相关的项目(例如使用 Flask 开发的 Web 应用)也很有用。例如,我为我的个人博客(使用 Pelican)创建了一个环境。

 

下载过程中除了安装位置外,还有两个需要确认的地方。

检查包。我们将1)罗列出安装在我们电脑上的包,2)浏览可用的包,3)使用conda install命令来来安装以及移除一些包。对于一些不能使用conda安装的包,我们将4)在Anaconda.org网站上搜索。对于那些在其它位置的包,我们将5)使用pip命令来实现安装。我们还会安装一个可以免费试用30天的商业包IOPro

共享环境

在 GitHub 上共享代码时,最好同样创建环境文件并将其包括在代码库中。这能让其他人更轻松地安装你的代码的所有依赖项。对于不使用 conda 的用户,我通常还会使用 pip freeze(在此处了解详情)将一个 pip requirements.txt 文件导出并包括在其中。

Anaconda分为python2和python3两个版本,建议选择python3的最新版本,且安装完成后可单独配置其他版本。

澳门新浦京娱乐场网站 1

移除包、环境以及conda.我们将以学习删除你的包、环境以及conda来结束这次测试。

了解更多信息

要详细了解 conda 以及它如何融入到 Python 生态系统中,请查看这篇由 Jake Vanderplas 撰写的文章:Conda myths and misconceptions(有关 conda 的迷思和误解)。此外,如果你有空闲精力,也可以参考这篇 conda 文档。

 

第一个勾是是否把Anaconda加入环境变量,这涉及到能否直接在cmd中使用conda、jupyter、ipython等命令,推荐打勾,如果不打勾话问题也不大,可以在之后使用Anaconda提供的命令行工具进行操作;第二个是是否设置Anaconda所带的Python 3.6为系统默认的Python版本,这个自己看着办,问题不大。

二、完整过程

下载时选择推荐路径,并安装在自定义的D或E盘相应位置。

澳门新浦京娱乐场网站:初学必备,Anaconda入门教程。一路安装完成以后,就可以打开cmd测试一下安装结果。

提示:在任何时候你可以通过在命令后边跟上--help来获得该命令的完整文档。例如,你可以通过如下的命令来学习conda的update命令。

 

分别输入python、ipython、conda、jupyter notebook等命令,会看到相应的结果,说明安装成功。(python是进入python交互命令行;ipython是进入ipython交互命令行,很强大;conda是Anaconda的配置命令;jupyter notebook则会启动Web端的ipython notebook)

conda update --help

安装完毕后,打开Anaconda Navigator,开始初始设置。

需要注意的是jupyter notebook命令会在电脑本地以默认配置启动jupyter服务,之后会再谈到这个。

1. 管理conda:

 

Anaconda安装成功之后,我们需要修改其包管理镜像为国内源。

Conda既是一个包管理器又是一个环境管理器。你肯定知道包管理器,它可以帮你发现和查看包。但是如果当我们想要安装一个包,但是这个包只支持跟我们目前使用的python不同的版本时。你只需要几行命令,就可以搭建起一个可以运行另外python版本的环境。,这就是conda环境管理器的强大功能。

输入conda list,查看已经安装好的内容。

二、配置镜像地址,否则从官方网站下载升级文件太慢

提示:无论你使用Linux、OS X或者Windows命令行工具,在你的命令行终端conda指令都是一样的,除非有特别说明。

 

安装完成后,找到Anaconda prompt,加入镜像地址,完成配置:

检查conda已经被安装。

如果报错诸如“不是内部或外部命令,也不是应用程序”,首先检查是否曾经安装的python没有删除干净,其次查询PATH.

conda config --add channels
conda config --set show_channel_澳门新浦京娱乐场网站:初学必备,Anaconda入门教程。urls yes

为了确保你已经在正确的位置安装好了conda,让我们来检查你是否已经成功安装好了Anaconda。在你的命令行终端窗口,输入如下代码:

 

在 Windows 上,会随 Anaconda 一起安装一批应用程序:

conda --version

配置环境变量Path操作方法如下:

  • Anaconda Navigator,它是用于管理环境和包的 GUI
  • Anaconda Prompt 终端,它可让你使用命令行界面来管理环境和包
  • Spyder,它是面向科学开发的 IDE

Conda会返回你安装Anaconda软件的版本。

控制面板--系统和安全--系统--高级系统设置--高级页面下环境变量--path新建--范例(D:SoftwareAnacondaScripts)

为了避免报错,我推荐在默认环境下更新所有的包。打开 Anaconda Prompt (或者 Mac 下的终端),键入:

提示:如果你看到了错误信息,检查你是否在安装过程中选择了仅为当前用户按安装,并且是否以同样的账户来操作。确保用同样的账户登录安装了之后重新打开命令行终端窗口。

 

conda upgrade --all

升级当前版本的conda

 

并在提示是否更新的时候输入 y(Yes)以便让更新继续。初次安装下的软件包版本一般都比较老旧,因此提前更新可以避免未来不必要的问题。

接下来,让我们通过使用如下update命令来升级conda:

而后,在Anaconda Navigator输入conda --version查询是否配置成功。

管理包

conda update conda

 

安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入conda install package_name。例如,要安装 numpy,请键入 conda install numpy

conda将会比较新旧版本并且告诉你哪一个版本的conda可以被安装。它也会通知你伴随这次升级其它包同时升级的情况。

所有包更新

你还可以同时安装多个包。类似 conda install numpy scipy pandas的命令会同时安装所有这些包。还可以通过添加版本号(例如 conda install numpy=1.10)来指定所需的包版本。

如果新版本的conda可用,它会提示你输入y进行升级.

conda upgrade --all

Conda 还会自动为你安装依赖项。例如,scipy 依赖于 numpy,因为它使用并需要 numpy。如果你只安装 scipy (conda install scipy),则 conda 还会安装 numpy(如果尚未安装的话)。

proceed ([y]/n)? y

【y/n】后面输入y

大多数命令都是很直观的。要卸载包,请使用conda remove package_name。要更新包,请使用 conda update package_name。如果想更新环境中的所有包(这样做常常很有用),请使用 conda update --all。最后,要列出已安装的包,请使用前面提过的conda list

conda更新到最新版后,我们将进入下一个主题。

即可更新所有包

如果不知道要找的包的确切名称,可以尝试使用 conda search search_term进行搜索。例如,我知道我想安装 Beautiful Soup,但我不清楚确切的包名称。因此,我尝试执行 conda search beautifulsoup

2. 管理环境。

注:此步骤非必须,因为后续配置环境等过程中会提示更新或自动更新所需相应的包。

搜索 beautifulsoup

现在我们通过创建一些环境来展示conda的环境操作,然后移动它们。

 

它返回可用的 Beautiful Soup 包的列表,并列出了相应的包名称 beautifulsoup4。

创建并激活一个环境

管理包(如request)的命令:

管理环境

使用conda create命令,后边跟上你希望用来称呼它的任何名字:

1)安装:conda install request  或  pip install request

如前所述,你可以使用 conda 创建环境以隔离项目。要创建环境,请在终端中使用 conda create -n env_name list of packages。在这里,-n env_name 设置环境的名称(-n 是指名称),而 list of packages 是要安装在环境中的包的列表。例如,要创建名为 my_env 的环境并在其中安装 numpy,请键入 conda create -n my_env numpy

conda create --name snowflake biopython

2)卸载:conda remove request

澳门新浦京娱乐场网站 2

这条命令将会给biopython包创建一个新的环境,位置在/envs/snowflakes

3)更新:conda update request

创建环境时,可以指定要安装在环境中的 Python 版本。这在你同时使用 Python 2.x 和 Python 3.x 中的代码时很有用。要创建具有特定 Python 版本的环境,请键入类似于conda create -n py3 python=3conda create -n py2 python=2的命令。实际上,我在我的个人计算机上创建了这两个环境。我将它们用作与任何特定项目均无关的通用环境,以处理普通的工作(可轻松使用每个 Python 版本)。这些命令将分别安装 Python 3 和 Python 2 的最新版本。要安装特定版本(例如 Python 3.3),请使用 conda create -n py python=3.3

小技巧:很多跟在--后边常用的命令选项,可以被略写为一个短线加命令首字母。所以--name选项和-n的作用是一样的。通过conda -h或conda –-help来看大量的缩写。

4)列出所有安装包:conda list

进入环境

激活这个新环境

5)搜索:conda search request(搜索内容为关键词)

创建了环境后,在 OSX/Linux 上使用 source activate my_env进入环境。在 Windows 上,请使用 activate my_env

Linux,OS X: source activate snowflakes
Windows:activate snowflake`

 

进入环境后,你会在终端提示符中看到环境名称,它类似于 (my_env) ~ $。环境中只安装了几个默认的包,以及你在创建它时安装的包。你可以使用 conda list 检查这一点。在环境中安装包的命令与前面一样:conda install package_name。不过,这次你安装的特定包仅在你进入环境后才可用。要离开环境,请键入 source deactivate(在 OSX/Linux 上)。在 Windows 上,请使用deactivate

小技巧:新的开发环境会被默认安装在你conda目录下的envs文件目录下。你可以指定一个其他的路径;去通过conda create -h了解更多信息吧。

环境:

保存和加载环境

小技巧:如果我们没有指定安装python的版本,donda会安装我们最初安装conda时所装的那个版本的python。

0)虚拟环境:输入activate,直接进入(base)环境

共享环境这项功能确实很有用,它能让其他人安装你的代码中使用的所有包,并确保这些包的版本正确。你可以使用 conda env export > environment.yaml 将包保存为 YAML。命令的第一部分 conda env export 用于输出环境中的所有包的名称(包括 Python 版本)。

创建第二个环境

1)安装:输入conda create -n (设置环境名称,如first)python=3

澳门新浦京娱乐场网站 3

这次让我们来创建并命名一个新环境,然后安装另一个版本的python以及两个包 Astroid 和 Babel。

2)进入环境的命令:activate first

将导出的环境输出到终端中

conda create -n bunnies python=3 Astroid Babel

3)退出环境的命令:deactivate first

上图中,你可以看到环境的名称和所有依赖项及其版本。导出命令的第二部分 > environment.yaml 将导出的文本写入到 YAML 文件 environment.yaml 中。现在可以共享此文件,而且其他人能够用于创建和你项目相同的环境。

这将创建第二个基于python3 ,包含Astroid 和 Babel 包,称为bunnies的新环境,在/envs/bunnies文件夹里。

4)列出环境的命令:conda env list

要通过环境文件创建环境,请使用 conda env create -f environment.yaml。这会创建一个新环境,而且它具有同样的在 environment.yaml 中列出的库。

小技巧:在此同时安装你想在这个环境中运行的包,

5)删除环境的命令:conda env remove -n first、

列出环境

小提示:在你创建环境的同时安装好所有你想要的包,在后来依次安装可能会导致依赖性问题(貌似是,不太懂这个术语怎么翻)。

6)环境导出:环境的文件为yaml文件,命令为conda env export>envorinment.yaml

如果忘记了环境的名称(我有时会这样),可以使用 conda env list列出你创建的所有环境。你会看到环境的列表,而且你当前所在环境的旁边会有一个星号。默认的环境(即当你不在选定环境中时使用的环境)名为 root。

小技巧:你可以在conda create命令后边附加跟多的条件,键入conda create –h 查看更多细节。

7)环境导入:首先进入某一环境,然后更新环境,更新的命令为conda env update -f=(本地路径)

删除环境

列出所有的环境

 

如果你不再使用某些环境,可以使用conda env remove -n env_name删除指定的环境(在这里名为 env_name)。

现在让我们来检查一下截至目前你所安装的环境,使用conda environment info 命令来查看它:

使用环境

conda info --envs

对我帮助很大的一点是,我的 Python 2 和 Python 3 具有独立的环境。我使用了 conda create -n py2 python=2 和 conda create -n py3 python=3 创建两个独立的环境,即 py2 和 py3。现在,我的每个 Python 版本都有一个通用环境。在所有这些环境中,我都安装了大多数标准的数据科学包(numpy、scipy、pandas 等)。

你将会看到如下的环境列表:

我还发现,为我从事的每个项目创建环境很有用。这对于与数据不相关的项目(例如使用 Flask 开发的 Web 应用)也很有用。例如,我为我的个人博客(使用 Pelican)创建了一个环境。

conda environments:

共享环境

 snowflakes          * /home/username/miniconda/envs/snowflakes

在 GitHub 上共享代码时,最好同样创建环境文件并将其包括在代码库中。这能让其他人更轻松地安装你的代码的所有依赖项。对于不使用 conda 的用户,我通常还会使用 pip freeze(在此处了解详情)将一个 pip requirements.txt 文件导出并包括在其中。

 bunnies               /home/username/miniconda/envs/bunnies

继续补充一点:

 root                  /home/username/miniconda

配置完成,可以愉快地玩耍了。

确认当前环境

输入:conda list查看安装了那些包

你现在处于哪个环境中呢?snowflakes还是bunnies?想要确定它,输入下面的代码:

测试一下:

conda info -envis

澳门新浦京娱乐场网站 4

conda将会显示所有环境的列表,当前环境会显示在一个括号内。

切换当前环境:

(snowflakes)

当前是python3,如果切换到2.7,则输入

注意:conda有时也会在目前活动的环境前边加上*号。

conda create -n python2 python=2.7

切换到另一个环境(activate/deactivate)

澳门新浦京娱乐场网站 5

为了切换到另一个环境,键入下列命令以及所需环境的名字。

输入:

Linux,OS X: source activate snowflakes
Windows:activate snowflakes

activate python2

如果要从你当前工作环境的路径切换到系统根目录时,键入:

完成环境切换

Linux,OS X: source deactivate
Windows: deactivate

澳门新浦京娱乐场网站 6

当该环境不再活动时,将不再被提前显示。

补充:

复制一个环境

conda常用命令
查看当前系统下的环境
conda info -e
创建新的环境
# 指定python版本为2.7
conda create -n python2 python=2.7
# 同时安装必要的包
conda create -n python2 numpy matplotlib python=2.7
环境切换
# linux/Mac下需要使用source activate python2
activate python2
#退出环境
deactivate python2
移除环境
conda remove -n python2 --all

通过克隆来复制一个环境。这儿将通过克隆snowfllakes来创建一个称为flowers的副本。

因为篇幅原因,具体的使用可以参考下面的文章

conda create -n flowers --clone snowflakes

Windows下Anaconda的安装和简单使用方法

通过conda info –-envs来检查环境

您可能感兴趣的文章:

  • 致Python初学者 Anaconda入门使用指南完整版
  • Windows下anaconda安装第三方包的方法小结(tensorflow、gensim为例)
  • Python学习之Anaconda的使用与配置方法
  • Windows下Anaconda的安装和简单使用方法
  • Anaconda多环境多版本python配置操作方法
  • 开源软件包和环境管理系统Anaconda的安装使用
  • python anaconda 安装 环境变量 升级 以及特殊库安装的方法
  • 解决python3在anaconda下安装caffe失败的问题
  • 利用Anaconda完美解决Python 2与python 3的共存问题
  • windows上安装Anaconda和python的教程详解
  • 更改Ubuntu默认python版本的两种方法python-> Anaconda
  • Python科学计算环境推荐——Anaconda
  • Anaconda入门使用总结

你现在应该可以看到一个环境列表:flowers, bunnies, and snowflakes.

删除一个环境

如果你不想要这个名为flowers的环境,就按照如下方法移除该环境:

conda remove -n flowers --all

为了确定这个名为flowers的环境已经被移除,输入以下命令:

conda info -e

flowers 已经不再在你的环境列表里了,所以我们知道它被删除了。

学习更多关于环境的知识

如果你想学习更多关于conda的命令,就在该命令后边跟上 -h

conda remove -h

3. 管理Python

conda对Python的管理跟其他包的管理类似,所以可以很轻松地管理和升级多个安装。

检查python版本

首先让我们检查那个版本的python可以被安装:

conda search --full --name python

你可以使用conda search python来看到所有名字中含有“python”的包或者加上--full --name命令选项来列出完全与“python”匹配的包。

安装一个不同版本的python

现在我们假设你需要python3来编译程序,但是你不想覆盖掉你的python2.7来升级,你可以创建并激活一个名为snakes的环境,并通过下面的命令来安装最新版本的python3:

conda create -n snakes python=3
·Linux,OS X:source activate snakes
·Windows: activate snakes

小提示:给环境取一个很形象的名字,例如“Python3”是很明智的,但是并不有趣。

确定环境添加成功

为了确保snakes环境已经被安装了,键入如下命令:

conda info -e

conda会显示环境列表,当前活动的环境会被括号括起来(snakes)

检查新的环境中的python版本

确保snakes环境中运行的是python3:

python --version

使用不同版本的python

为了使用不同版本的python,你可以切换环境,通过简单的激活它就可以,让我们看看如何返回默认2.7

·Linux,OS X: source activate snowflakes
·Windows:activate snowflakes

检查python版本:

确保snowflakes环境中仍然在运行你安装conda时安装的那个版本的python。

python --version

注销该环境

当你完成了在snowflakes环境中的工作室,注销掉该环境并转换你的路径到先前的状态:

·Linux,OS X:source deactivate
·Windows:deactivate

4. 管理包

现在让我们来演示包。我们已经安装了一些包(Astroid,Babel和一些特定版本的python),当我们创建一个新环境时。我们检查我们已经安装了那些包,检查哪些是可用的,寻找特定的包并安装它。接下来我们在Anconda.org仓库中查找并安装一些指定的包,用conda来完成更多pip可以实现的安装,并安装一个商业包。

查看该环境中包和其版本的列表:

使用这条命令来查看哪个版本的python或其他程序安装在了该环境中,或者确保某些包已经被安装了或被删除了。在你的终端窗口中输入:

conda list

使用conda命令查看可用包的列表

一个可用conda安装的包的列表,按照Python版本分类,可以从这个地址获得:

查找一个包

首先让我们来检查我们需要的这个包是否可以通过conda来安装:

conda search beautifulsoup4

它展示了这个包,所以我们知道它是可用的。

安装一个新包

我们将在当前环境中安装这个Beautiful Soup包,使用conda命令如下;

conda install --name bunnies beautifulsoup4

提示:你必须告诉conda你要安装环境的名字(-n bunies)否则它将会被安装到当前环境中。

现在激活bunnies环境,并且用conda list来显示哪些程序被安装了。

·Linux,OS X:source activate bunnies
·Windows:activate bunnies

所有的平台:

conda list

从Anaconda.org安装一个包

如果一个包不能使用conda安装,我们接下来将在Anaconda.org网站查找。Anaconda.org向公开和私有包仓库提供包管理服务。Anaconda.org是一个连续分析产品。

提示:你在Anaconda.org下载东西的时候不强制要求注册。

为了从Anaconda.org下载到当前的环境中,我们需要通过指定Anaconda.org为一个特定通道,通过输入这个包的完整路径来实现。

在浏览器中,去 网站。我们查找一个叫“bottleneck”的包,所以在左上角的叫“Search Anaconda Cloud”搜索框中输入“bottleneck”并点击search按钮。

Anaconda.org上会有超过一打的bottleneck包的版本可用,但是我们想要那个被下载最频繁的版本。所以你可以通过下载量来排序,通过点击Download栏。

点击包的名字来选择最常被下载的包。它会链接到Anaconda.org详情页显示下载的具体命令:

conda install --channel https://conda .anaconda.ort/pandas bottleneck

检查被下载的包

conda list

通过pip命令来安装包

对于那些无法通过conda安装或者从Anaconda.org获得的包,我们通常可以用pip(“pip install packages”的简称)来安装包。

提示: pip只是一个包管理器,所以它不能为你管理环境。pip甚至不能升级python,因为它不像conda一样把python当做包来处理。但是它可以安装一些conda安装不了的包,和vice versa(此处不会翻译)。pip和conda都集成在Anaconda或miniconda里边。

我们激活我们想放置程序的环境,然后通过pip安装一个叫“See”的程序。

·Linux,OS X: source activate bunnies
·Windows:activate bunnies

所有平台:

pip install see

检查pip安装

检查See是否被安装:

conda list

安装商业包

安装商业包与你安装其他的包的过程异常。举个例子,让我们安装并删除一个更新的商业包的免费试用 IOPro,可以加速你的python处理速度:

conda install iopro

提示:除了学术使用,该版本在30天后试用期满

你现在可以安装以及检查你想用conda安装的任何包,无论使用conda命令、从Anaconda.org下载或者使用pip安装,无论开源软件还是商业包。

5. 移除包、环境、或者conda

如果你愿意的话。让我们通过移除一个或多个试验包、环境以及conda来结束这次测试指导。

移除包

假设你决定不再使用商业包IOPro。你可以在bunnies环境中移除它。

conda remove -n bunnies iopro

确认包已经被移除

使用conda list命令来确认IOPro已经被移除了

conda list

移除环境

我们不再需要snakes环境了,所以输入以下命令:

conda remove -n snakes --all

确认环境被移除

为了确认snakes环境已经被移除了,输入以下命令:

 conda info --envis

snakes不再显示在环境列表里了,所以我们知道它已经被删除了

删除conda

Linux,OS X:

移除Anaconda 或 Miniconda 安装文件夹

rm -rf ~/miniconda OR  rm -rf ~/anaconda

Windows:

去控制面板,点击“添加或删除程序”,选择“Python2.7(Anaconda)”或“Python2.7(Miniconda)”并点击删除程序。

本文由澳门新浦京娱乐场网站发布于澳门新浦京娱乐场网站,转载请注明出处:澳门新浦京娱乐场网站:初学必备,Anaconda入门教